Cancer Research UK Scotland Centre

As part of the Cancer Research UK Scotland Centre, we aim to translate the latest discovery science into patient benefit.

Image
CRUK Scotland Centre logo

Established in 2022, the Cancer Research UK Scotland Centre brings together the very best in cancer research from Edinburgh and Glasgow with the unifying mission to translate cutting-edge discoveries into promising therapeutic opportunities for the Scottish population. 

The CRUK Scotland Centre is led by Prof Charlie Gourley (Clinical Director) and Prof Owen Sansom (Scientific Director). Our research focuses on cancers that profoundly affect people in Scotland, and cancers in which we have a growing expertise. 

Collaborating across more than 80 teams, we support research activities in both the Universities of Edinburgh and Glasgow, including the Institute of Genetics and Cancer in Edinburgh and the School of Cancer Sciences and CRUK Scotland Institute in Glasgow. 

Our scientists work closely with the Glasgow and Edinburgh Experimental Cancer Medicine Centres and Clinical Trials Unit and benefit from unprecedented access to the two largest cancer treatment centres for patients in Scotland, the Beatson West of Scotland Cancer Centre and the Western General Hospital. 

Our research at the CRUK Scotland Centre is directed at six tumour-focused themes and an additional theme on data, underpinning the individual research strands.  
  • Colorectal cancer 
  • Hepatobiliary cancer 
  • Pancreatic cancer 
  • Mesothelioma 
  • Brain tumours 
  • Gynaecological cancer 
More information about the Cancer Research UK Scotland Centre can be found on our website:

https://www.crukscotlandcentre.ac.uk/ 

Governance 

Cancer Research UK Scotland Centre 

Research funded as part of the Cancer Research UK Scotland Centre is led jointly by Prof Owen Sansom (Scientific Director) and Prof Charlie Gourley (Clinical Director). Our joint directors work closely with the senior management team, formed by Prof Chris Halsey, Prof Gareth Inman, Prof Neil Carragher, Prof Liz Patton, Prof Steve Pollard, Denise Calder, Dr Jackie Beesley (Centre Manager) and Dr Katharina Schraut (Senior Project coordinator), who oversee the day-to-day management and operation of the Centre. 

Cancer Research UK Scotland Centre Leadership [link https://www.crukscotlandcentre.ac.uk/about-us/our-team]  

https://www.crukscotlandcentre.ac.uk/about-us  

 

The Cancer Research UK Scotland Centre management and strategic direction is overseen by a governance board. Scientific strategy of the centre is supported by an external Scientific Advisory Board.    

Cancer Research UK Scotland Centre Governance Board membership: 

John Iredale (Chair) 

University of Bristol 

Moira Whyte (Deputy Chair) 

University of Edinburgh 

Alex Pemberton 

Cancer Research UK 

Iain McInnes 

University of Glasgow 

David Argyle 

University of Edinburgh 

Sarah Cunningham Burley 

University of Edinburgh 

Margaret Frame 

University of Edinburgh 

Alasdair Gray 

Lothian Health Board 

Owen Sanson 

Scientific Director, CRUK Scotland Centre, University of Glasgow 

Charlie Gourley 

Clinical Director, CRUK Scotland Centre, University of Edinburgh 

Gareth Inman 

Scientific Strategy Lead, CRUK Scotland Centre, University of Glasgow 

Chris Halsey 

Senior Management, CRUK  Scotland Centre, University of Glasgow 

Denise Calder 

Director of Strategic Partnerships, CRUK Scotland Centre, University of Edinburgh 

Liz Patton 

Senior Management, CRUK Scotland Centre, University of Edinburgh 

Neil Carragher 

Senior Management, CRUK Scotland Centre, University of Edinburgh 

Steve Pollard 

Senior Management, CRUK Scotland Centre, University of Edinburgh 

Jackie Beesley 

Centre Manager, CRUK Scotland Centre, University of Glasgow 

Kate Schraut 

Senior Project Coordinator, CRUK Scotland Centre, University of Glasgow 

Arek Welman 

Scientific Funding Manager, University of Edinburgh 

 

Cancer Research UK Scotland Centre Scientific Advisory Board membership:   

Prof Jan Paul Medema - Chair  

Professor of Cancer Biology and Immunology, Amsterdam UMC  

Prof Sarah Blagden - Chair   

Professor of Experimental Oncology, Department of Oncology, University of Oxford   

Prof Michaela Frye  

Head of Division of Mechanisms regulating gene expression, German Cancer Centre, DKFZ   

Prof Kristian Helin  

Chief Executive and President of The Institute of Cancer Research, London   

Dr Ultan Mcdermott  

Chief Scientist at AstraZeneca   

Prof Eva Morris  

Professor of Health Data Epidemiology, Big Data Institute and Oxford Population Health, University of Oxford   

Prof Magnus Rattray 

Professor of Computational & Systems Biology, and Director of the Institute for Data Science & Artificial Intelligence at the University of Manchester   

 

Professor Jan Paul Medema - Chair 

Professor of Cancer Biology and Immunology, Amsterdam UMC 

Jan Paul Medema studied Chemistry in Leiden and performed his PhD studies at the University of Utrecht analyzing the role of the Ras GTPase GAP120 in differentiation of keratinocytes. During his first postdoctoral years at the German Cancer Center in Heidelberg he worked on the signal transduction cascade induced by CD95/Fas/APO-1 and used this insight in cancer immunology during his postdoc at the LUMC in Leiden. Here he became assistant and subsequently associate Professor focussing more and more on the role of cell death escape mechanisms that tumors use to avoid immune surveillance and help escape from chemotherapy. In 2005 he moved to the AMC in Amsterdam to start the laboratory of Experimental Oncology and Radiobiology (LEXOR) and became full Professor, department head and in 2016 Scientific director of the Cancer Center Amsterdam. His laboratory LEXOR now houses multiple research teams that study cancers of the gastrointestinal tract, specifically colorectal, oesophageal and pancreatic cancer. The aim is to understand the heterogeneity present within these cancers and between distinct cancer patients. For colorectal cancer we have been instrumental in the design of molecular subtypes that identify patient groups with clearly distinctive tumors from a biological point of view. Understanding the ontogeny, molecular wiring and vulnerabilities of these molecular subtypes is key to our research program. 

Next to this patient-to-patient variation we study the intra-tumor heterogeneity from a cancer stem cell perspective. Interaction with the microenvironment, nutrients, microvasculature and immune components is part of our studies to unravel biological wiring as well as novel targets for therapy. 

For our studies we depend on primary tumor material from patients and hence we have optimal connection to several clinical departments (Surgery, Pathology, Radiotherapy, Med Oncology and Gastroenterology). Moreover, organoids and xenografts derived from tumor material as well as a wide range of mouse models is part of our research infrastructure. 

https://www.amsterdamumc.org/en/research/researchers/jan-paul-medema.htm  

  

Prof Sarah Blagden - Chair  

Professor of Experimental Oncology, Department of Oncology, University of Oxford 

mRNA Dysregulation in Cancer 

Gene expression describes the conversion of genetic message to protein. This depends on messenger RNA (mRNA) which copies the gene sequence, shuttles into the cytoplasm, binds ribosomes and generates protein. Numerous RNA binding proteins (RBPs) attach to these mRNA transcripts and regulate their splicing, stability, subcellular localisation and rate of translation.  

In cancer cells, expression of RBPs is disrupted, driving the malignant state by preserving the stability of proto-oncogenic mRNAs while destabilising those with tumour suppressor functions. One such RBP is La-related protein 1 (LARP1). We have shown that LARP1 is capable of selectively binding transcripts involved in cancer processes and is present at high levels in some epithelial cancers. The net effect of LARP1 upregulation is to drive cancer progression. The purpose of our research is to discover more about cancer RBPs and develop therapeutics against them that can be used as anti-cancer treatments.  

LARP1 (green) highly expressed in the cytoplasm of a cancer cell. LARP1 is associated with almost 3000 mRNAs predominantly those encoding cancer signalling proteins. 

  

Cancer Therapeutics 

A crucial part of cancer drug discovery is finding the best cancer treatments for the future.  

The Oxford Early Phase Cancer Trials Unit has a long established track record of drug discovery and delivering novel therapies safely and effectively. Dr Blagden has a strong science and medical background which enables her to design clinical trials, investigate treatments (developed by academia or industry) and deliver them to cancer patients. In leading the Early Phase Trials Unit, Dr Blagden’s team investigate new treatments for patients with cancer. Potential treatments are carefully chosen on their scientific rationale, their likelihood of being effective and, most importantly, their safety profile. 

https://blagdenlab.wordpress.com/research/ 

  

Prof Michaela Frye 

Head of Division of Mechanisms regulating gene expression, German Cancer Centre, DKFZ 

The decision of stem cells to self-renew, proliferate or undergo differentiation is initiated by external stimuli that are linked to an intrinsic network of transcriptional, post-transcriptional and translational processes. RNA plays versatile roles in the transcription and translation of genes into proteins. To expand the function of an RNA molecule and to increase its capacity to encode information, each nucleobase can be chemically modified. To date over 150 chemical modifications are known in RNA. Many RNA modifications are functionally indispensable for protein translation because they regulate messenger RNA stability and splicing as well as protein translation efficiency and accuracy.  One of the most common chemical RNA modification is methylation. Cytosine-5 RNA methylation for instance, is mediated by a large group of evolutionary conserved enzymes. The correct deposition of a methyl mark at cytosines is required for normal development and aberrant RNA methylation can lead to severe human diseases. Using a combination of novel transcriptome-wide quantitative analyses and well-established mouse and human in vitro and in vivo differentiation models, our group dissects the roles of RNA methyltransferases and their methylated target RNAs in normal development, human disease and cancer.  Ultimately, this division seeks to understand how RNA modification pathways regulate stem cell fate, and to explore whether modulation of RNA-modification pathways can help to protect from cancer. 

https://www.dkfz.de/en/regulatorische-mechanismen-genexpression/index.php  

  

Prof Kristian Helin 

Chief Executive and President of The Institute of Cancer Research, London 

Professor Kristian Helin’s group studies the role of chromatin-associated proteins (epigenetics) in the regulation of transcription, cell fate decisions and in cancer. The group is also using functional genetic screens to identify potential novel targets for the development of anti-cancer therapy. 

https://www.icr.ac.uk/our-research/research-divisions/division-of-cancer-biology/epigenetics-and-cancer  

  

Dr Ultan McDermott  

Chief Scientist at AstraZeneca 

I have a lifelong interest in understanding how cancer genomes impact response to therapy in the clinic. In my role as Chief Scientist at AstraZeneca and the Head of the Functional Genomics Centre, I focus on the use of CRISPR screens and single cell sequencing to identify novel targets for cancer treatment.  

At AstraZeneca, we use state-of-the-art CRISPR tools for target identification, to advance our understanding of mechanisms of drug resistance, to help us develop new combination therapies, identify novel biomarkers for patient selection in clinical trials and to understand the fundamental biology of cancer.  

Prior to joining AstraZeneca in 2018, I worked as a postdoctoral fellow with Jeff Settleman at Massachusetts General Hospital Cancer Centre on high-throughput cancer cell line drug screens and resistance mechanisms. I have also served as Group Leader and member of Faculty at the Wellcome Sanger Institute for 10 years 

https://uk.linkedin.com/in/ultan-mcdermott-mb-phd-frcp-14016bb8  

  

Professor Eva Morris 

Professor of Health Data Epidemiology, Big Data Institute and Oxford Population Health, University of Oxford 

The AHRU, led by Eva Morris and Sasha Shepperd, aims to drive improvements in health care and outcomes through translational research and methodological innovation. 

Our research focuses on:  

  • understanding variation in incidence, prevalence, treatment pathways and health outcomes, 

  • evaluating the effectiveness and cost effectiveness of health services in relation to a range of diseases and health problems, 

  • evaluating the equitable implementation of effective interventions to improve health and avoid research waste. 

  • We advocate for the robust and innovative use of data to generate evidence to guide the design and delivery of effective and equitable health services to improve population health. We do this by conducting epidemiological research, and evidence synthesis to place our research within the context of existing evidence, randomised trials, surveys and qualitative research. 

The group’s linked data assets, include national and regional hospitalisation records which run from 50 years ago to the present day, national mortality (civil registration) records, cancer registry data, and primary care records which provide extensive research opportunities. Methodological approaches developed for these datasets complement those required for other datasets in Oxford Population Health that also link to hospitalisation and other routine clinical data (such as the Million Women Study, UK Biobank, and large clinical trials), providing efficient means for testing specific hypotheses in more depth.    

https://www.ndph.ox.ac.uk/research/research-groups/applied-health-research-unit-ahru  

  

Prof Magnus Rattray 

Professor of Computational & Systems Biology, and Director of the Institute for Data Science & Artificial Intelligence at the University of Manchester 

Magnus uses probabilistic modelling and Bayesian inference techniques to study biological systems across a broad range of temporal and spatial scales, from gene expression in single cells to longitudinal population health data. Recent work includes methods to uncover oscillations from single-cell imaging time course data and the development of scalable Gaussian process models for pseudotime and branching process inference using single-cell omics data. 

https://www.turing.ac.uk/people/researchers/magnus-rattray  

 

 

Image
Medical Research Centre, The University of Edinburgh, CRUK Scotland Centre, University of Glasgow, NHS Lothian and NHS Greater Glasgow and Clyde logos